.

REPORT DOCUMENTATION PAGE

Form Approved
OME Neo. 0704-Gi138

gathering and maintaining the data needed, and completing and reviewing the coliection of information. Send comments re
collectron of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

arding this burden estimate or any other aspect of this
or tnformation Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

The Application of Artifical Neural Networks to Object
Direction In Digital Images

5. FUNDING NUMBERS

6. AUTHOR(S)

Steacy Warren Housholder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFIT Students Attending:

University of Texas at Austin

8. PERFORMING ORGANIZATION
REPCK! NUMBEK

AFIT/CI/CIA
95-74

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STREET, BLDG 125
WRIGHT-PATTERSON AFB OH 45433-7765

11. SUPPLEMENTARY NOTES

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release IAW AFR 190~
Distribution Unlimited

BRIAN D. Gauthier, MSgt, USAF

Chief Administration

ISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

144

14, SUBJECT TERMS

15. NUMBER OF PAGES
62

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REFORT

18. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500




Abstract

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO OBJECT

DETECTION IN DIGITAL IMAGES
By
STEACY WARREN HOUSHOLDER, M.S.E.
Second Lieutenant, USAF
Supervising Professor: Dr. Joydeep Ghosh

University of Texas at Austin, 1995

This report surveys the topic of object detection in digital images. It outlines a standard
method of analysis for the perception process. Several imaging and recognition issues are
identified and explored through the human visual system as a model which is then used for
constructing an artificial perception system. This leads to the study of self-organized artificial
neural networks. The study includes the standard Kohonen feature map and several of its
variations. The report will next focus on the application of these neural networks to object
recognition tasks. The length of the work is 61 pages and includes research conducted in a
wide variety of publications. Key primary and secondary resources are listed below (The

original list is 34).

[1] Stephen Grossberg. “Neural Pattern Discrimination.” In Gail A. Carpenter

and Stephen Grossberg, editors, Pattern Recognition by Self-Organizing
Neural Networks, pp. 1-34. Cambridge: The MIT Press, 1991.

[2] Ralph Linsker. “Self-organization in a Perceptual Network.” In IEEE
Computer, vol. 21, no. 3, pp- 105-117, 1988.

[3] David Marr. Vision; A Computational Investigation into the Human

Representation and Processing of Visual Information. San Francisco: W.H.

Freeman and Company, 1982.

[4] Erkki Oja. “Self-Organizing Maps and Computer Vision.” In Harry
Wechsler, editor, Neural Networks for Perception; Volume 1; Human and

" Machine Perception, pp. 368-385. New York: Academic Press, Inc, 1992.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

oo

By

Distribution |

Availability Codes

i Avail and/or
Dist Special

-/




Copyright
by
Steacy Warren Housholder

1995




THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS

TO OBJECT DETECTION IN DIGITAL IMAGES

by

STEACY WARREN HOUSHOLDER, B.S.

REPORT

Presented to the Faculty of the Graduate School
of The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

AUGUST, 1995




THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO

OBJECT DETECTION IN DIGITAL IMAGES

Approved:

Supervisor:

Dy J. ¢hosh/

ey

Dr. B.F. Womack




To My Wife, Lisa Anne




Preface

I would like to take the opportunity to thank the faculty and staff of the
Electrical and Computer Engineering Department of this university for all of
their assistance and insight during the course of my studies. I would like to
extend special thanks to my academic advisor, Dr. J. Ghosh, for his
contributions to the research conducted in this report. Finaily, I would like to
thank my friends and family for all of their support, encouragement, and

steadfast patience throughout my various studies.

Steacy Warren Housholder

The University of Texas at Austin

August 1995




Abstract

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO

OBJECT DETECTION IN DIGITAL IMAGES

By

STEACY WARREN HOUSHOLDER, M.S.E.

Supervising Professor: Dr. Joydeep Ghosh

This report surveys the topic of object detection in digital images. It
outlines a standard method of analysis for the perception process. Several
imaging and recognition issues are identified and explored through the human
visual system as a model which is then used for constructing an artificial
perception system. This leads to the study of self-organized artificial neural
networks. The study includes the Kohonen feature map and several of its
variations. The report will next focus on the application of these neural

networks to object recognition tasks.
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Chapter1
Introduction

1.1 Purpose

The desire to create cognitive machines that can think, learn, and
understand like the human brain motivates the research conducted in this
report. Such machines should be capable of interacting with the surrounding
environment based on various inputs and stored memories. They should be
able to react to novel situations, draw intelligent conclusions, and save pertinent
information for future use. Such machines should also be capable of
communicating these processes to the outside world in some natural language.
It is safe to state that the required qualities of any future rational machine are
closely related to the current understanding of human cognition. This is by
default since human cognition is the best and most advanced model currently
available to researchers.

Leanard Uhr suggests in his book, Pattern Recognition, Learning, and
Thought; Computer-Programmed Models of Higher Mental Processes, that the key to
building machines that are truly aware is to understand fully the process of

human learning [32]. He points out that in a child, all the tools of learning are
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already present in the brain. All that is required for the child to become an

interactive and understanding adult is the exposure to various external stimuli.
Uhr proposes to begin with understanding the function of the brain and then fit
the corresponding structure. This is a tremendous simplification over any
approach that tries to examine a structure of the brain and fit its function. Most
parts of the brain are involved in an unknown number of tasks at any one time
that may be completely independent of each other. With the learning approach,
researchers can simplify functions to their most basic state and work towards
higher levels of understanding. The human model could be used to provide
insight for this function and possibly for determination of any required
hardware.

Uhr admits that even this approach of trying to understand the learning
process may not be simple enough by itself [32]. In order for learning to take
place, there must be something to learn about. In light of this, Uhr suggests that
an even more suitable starting point in the attempt to build a cognitive machine
is to focus on sensation and perception. Sensation and perception are the first
necessary steps in the learning process which are responsible for taking relevant
data from the outside world and placing it into a suitable format for higher
interpretation. It is perception that poses the greatest current challenge to

researchers. As a result, perception will be the focus of the current study. Uhr
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adds that an advantage of studying perception is that many similar problems

can be found in higher levels of cognition. These problems include “.....‘concept
formation’, ‘symbolization’, and ‘problem-solving’” [32].

In recent years there has been a tremendous amount of research conducted
in the area of image processing. Historically, image processing has referred to
the low level tasks of noise filtering, deblurring, geometrical transformations,
histogram equalization, thresholding, and local edge detection [21]. These are
tasks important for sensation. The great interest in image processing is due in
part to the wide proliferation and acceptance of computers in both the
commercial and private sectors. Image processing is useful in a wide variety of
applications including photography, surveillance, satellite imagery, and medical
imagery. Computer proliferation has itself led to the creation of a present need
and motivation to produce machines with some'basic abilities of both sensation
and perception. The primary difference in these machines over conventional
computers is their ability to interpret and categorize data. This need has
surfaced primarily in industry with possible uses ranging from quality control
in VLSI chip manufacturing and robotics to automated weather forecasting.
Needs also exist in applications like target recognition and MRI tissue

classification [25]. The result is that research focusing on perception in vision
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provides benefits in the short term for industrial applications as well as in the

long term for the future construction of cognitive machines.

Vision, as a particular domain, lends itself quite well to the problem of
understanding perception. A still image contains a tremendous amount of
information about the surrounding environment. The human visual system is
dominant among all of the senses and is extremely acute in interpreting this
information. Visual dominance is evident in light of the disproportionate part
that the human visual system plays (with respect to the other four senses) in
responding to changes in the environment. Think of how people respond when
faced with a change in what they are hearing, feeling, tasting, or smelling. The
first instinct is to locate the cause of the change with the individual’s eyes. This
report will focus on a specific type of perception, object detection and
identification in images. Since the sense of sight is so acute in humans,
researchers can actually see what results should be solicited from testing on a
machine or algorithm. The impact of these results is much more direct than
what a set of numerical results would be, and allows researchers to identify
specific difficulties experienced by the machine or algorithm.  Another
advantage of vision analysis is that images are easy to obtain and easy to
process. A wide variety of image types can be found to explore the detection of

objects under varying circumstances.
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Paralleling research in image processing during recent years is research in

artificial neural networks. These systems’have been inspired by biology in both
structure and functionality. Research in this field is motivated by the
acknowledgment that the human brain computes data in a completely different
manner than a conventional digital computer [13]. Instead of a linear execution
of instructions, a neural network structures data hierarchically, combines it in
parallel nonlinearly, and after several combiﬁmg steps reaches some final result.
This distributed form of computation allows neural networks to be good at
classification and generalization tasks. They are extremely valuable in finding
relationships between two domains where the mathematical mapping is
unknown. Errki Oja writes that neural networks are particularly suitable for use
in a visual perception system for two reasons [21]. First, this is primarily an
intermediate level of computation consisting of segmentation, feature extraction,
shape analysis, and texture analysis tasks. These tasks have computational
requirements that neither over- nor under-utilize neural network assets. Oja
also points out that the degree of parallelism ( O(n) ) for these tasks is both
achievable and practical considering current technology for implementations
using neural networks. A final reason for employing neural networks is that

their structure and functionality are similar enough to actual biological systems
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that they do provide greater insight into the way that perception is actually

accomplished by the human visual system.

Report research will specifically explore the use of self-organized neural
networks for application in visual perception systems. This subset of the neural
network field most closely approximates the actual operation of many biological
systems (not just limited ’to vision ). Past research has shown that self-
organizing feature maps have been useful in demonstrating the formation of
internal mental representations and general organization of the human visual
system [18]. The limitations of supervised neural networks prevent their
practical use in perception. Oja writes that supervised networks often require
extensive preprocessing in order to place data into a usable form [21]. In a
modular system ( like the human visual system .), it is difficult to specify the
individual module functions. Unsupervised networks avoid these basic
limitations and are better suited for use in vision applications. They also allow
researchers a means to perform most intermediate level imaging tasks without
having to incorporate specific apriori information (although this can be highly

beneficial).




1.2 Approach

This report will explore the various techniques currently employed in the
application of self-organizing networks to the problém of object detection in
digital images. Section 1.3 of this introduction chapter will precisely define a
few of the more important terms and concepts that will be used throughout the
report. It is the author’s intention that this will help alleviate some of the
ambiguity that is present in the field due to the current lack of terminology
standards. Chapter 2 will seek to build a solid foundation in the current
understanding of the biological structure and function of the human visual
system. First, it will explore some of the aspects of general imaging. This will
be specifically in relationship to the recognition of objects in an image. A
general approach to the analysis of the perception process will be outlined.
Next, the decision path from light sensation in the retina to object recognition by
the brain will be traced. This chapter will provide valuable insight into the
perception process. Due to the biological motivation of the self-organizing
networks employed, the chapter will also provide insight into various
construction and operation aspects required for perception. Chapter 3 describes
the Kohonen feature map which serves as a representative model of many self-

organizing neural networks. Several properties will be outlined. Chapter 4 will
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then explore some current issues in object detection including several

applications of self-organizing networks. Finally, chapter 5 will present some

conclusions and parting thoughts.

1.3 Terminology

The purpose of this section is to lay a brief, yet concise foundation of
standard terminology to be used throughout the remainder of the report. An
image will be used to refer to a 2 dimensional representation of a 3 dimensional
environment. An object is a collection of connected edges and textures in the
environment referred to as a single entity [33]. An image captures the 2
dimensional representations of a set of objects. The first step in identifying the
presence of a particular object in an image is the sensation phase. Sensation
refers to the simple one to one transformation of data from one representation to
another that is more useful. In the human visual system, for instance, this is the
transformation of light in the environment to electrical impulses in the retina.
Sensation is relatively easy to replicate with conventional computers.
Segmentation refers to the process of separating potential objects from the
background of an image [14]. Perception is the task of selecting, organizing,

generalizing, and classifying significant data. This is a many to one mapping
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which reduces the data set to a smaller more information-rich representation.

The goal is to capture some invariant aspect of the surrounding environment
[34]. This definition of perception is well accepted and can be found in [32], [19],
and [34]. The term recognition is the combined process of sensation and
perception. Two final terms need to ‘be defined. A distinction must be made
between pattern recognition and object recognition. Pattern recognition is the
sensation and perception of a 2 dimensional figure in the environment. Object
recognition is a similar function that is performed on 3 dimensional entity. The
latter function is the more difficult to perform due to the increased number of

parameters.




Chapter 2

Biological Foundations

2.1 Chapter Outline

The objective of this chapter is to lay a solid foundation for the biological
understanding of how the human visual system performs the tasks of sensation
and perception. The chapter will focus on the task of object recognition. Roger
Watt describes the overall process of vision by the human visual system in his
book, Understanding Vision [33]. He writes, “Vision is the extraction and analysis
of information from an optical image in preparation for, and execution of,
behavior within the scene” [33]. This definition is a specific application of the
perception term defined in Chapter 1. The second chapter will begin by giving
an overview of the way that the human visual system operates. Research will
next emphasize the human visual sys;tem’s ability to address key imaging
issues that apply directly to object detection. An approach for analyzing the
perception process will be outlined here for use throughout the report. The
chapter will then trace the sensation and perception process as it permeates

through the human visual system.

10
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2.2 Human Visual System - Overview

The human visual system is a highly modular group of organs capable of
acquiring and interpreting optical data from the environment. The system
processes data in a top down, constructive fashion [34]. It operates like a
selective filter choosing only relevant data to be passed on to subsequent
processing levels. The human visual system (HVS) performs its processing
tasks at several different image scales in parallel. This is evident from the way
that a person can see edges, windows and doors, and buildings all at once in an
image. Biologists agree that the HVS performs most of its tasks in parallel and
are highly skeptical that any iteration takes place [20]. The first stage in the
process is a set of filters that perform some of the Basic low level visual tasks like
deblurring, local edge detection, thresholding, and some primitive forms of
noise filtering [21]. This is followed by a set of feature detectors that perform
more intermediate levels of image processing. Feature detectors allow for a
dimensional reduction in the data set while maintaining the same information
content [13]. They are used in standard image processing to emphasize
important attributes of input data while at the same time reducing bandwidth

and storage requirements. These attributes are then used for other tasks like
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shape analysis, texture analysis, segmentation, and finally object recognition.

The final task of object recognition is performed using a combination of
important features and what is referred to as image context. The human visual
system is able to place a great amount of reliance on context due to the
redundancy inherent in most of its recognition chores (written letters in wordé,

objects present in certain environments, and spoken languages).

2.3 General Imaging Considerations

This next section will address a variety of Basic imaging considerations
important in object recognition. The section will also explain some of the
conduct of the human visual system in relation to these considerations. The first
step in the analysis of any process is to outline a strategy for its thorough

investigation.
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2.3.1 Analysis Approach

David Marr in his book, Vision, furnishes one such strategy [20]. He
explains how the problem of object detection can be analyzed in three different
modes. First, the process must be examined in light of its computational theory.
This refers to defining the goal of the process and outlining a general flow of its
operation. Second, the representation and algorithm of the process must be
assessed. The representation of the input and output data must be specified as
well as the algorithm. Finally, the hardware that is necessary to implement the
process must be specified. These three items must be addressed in order to fully
understand how any system successfully performs the task of perception. They

are the same items that researchers must render precise in order to build a

machine capable of perception.
2.3.2 Computational Theory
Chapter 1 gave a general description of the goal of the perception process.

That goal is to identify specific objects in an image. Perception in the human

visual system is a directed and active process [34]. Directed refers to the
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observers ability to choose the information to be processed. Active is

characteristic of exploration which is essential for the observer to be selective in
information acquisition. Directed and active perception builds upon low-level
invariant object representations and mappings. In addressing the second issue
for this first mode of investigation, the general logic of the process is outlined

above in Section 2.2.

2.3.3 Data Representation

The next task is to address the representation of input and output data as
specified by the second mode of investigation. The issue of the actual process
algorithm employed by the HVS to transform input data into output data will be
dealt with in section 2.4 along with the hardware implementation. Data
representation is one of the most crucial issues in perception. A particular
depiction of data allows for the explicit representation of certain important
features which are used to delineate between different objects. There is a
difference between explicit representations and implicit representations. An
explicit representations is a direct symbol of a feature or object. An implicit
representation is an indirect symbol with the same information content but it

must be further processed in order to be made explicit [8]. Data representations
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define the level of complexity that must exist in a mapping relationship of input

to output space. This will all vary depending on the particular object and
environment. It is important to realize that this mapping relationship is a many
to one mapping. There are usually multiple feature sets that defining an object.
The human brain even allows for multiple mappings from different senses.
David Marr outlines three aspects that describe a representation scheme
[20]. The first is the coordinate system that is utilized. A system that specifies
the positions of objects in an image relative to the viewer utilizes a viewer-
centered coordinate system. The alternative is to specify locations relative to a
viewed object. This is referred to as an object-centered coordinate system. A
viewer-centered coordinate system is easier to employ, but requires that same
objects viewed from different angles and translations be classified as different
objects. This results in a tremendous amount of storage overhead even for a
small number of objects. A viewer-centered coordinate system is analogous to
taking a picture of a scene and then trying to segment and identify the objects .
that are present. The object-centered approach avoids some of these memory
requirements and makes object perception computationally easier. This system
is comparable to taking a picture of a scene and generating an independent
coordinate system for each possible object. Each can then be rotated and scaled

to some standard format. Actual object identification can, as a result, always be
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performed by comparison with standard templates. The weakness of the

approach is that potenfial objects must be segmented from the image in
preceding steps. Specification of a coordinate system only determines how the
perception workload is to be divided up among processing levels.

The human visual system e*ploits a viewer—ceﬁtered approach [8]. Michael
Seibert and Allen Waxman report that there is significant biological support for
this [29]. They reference studies in [221, [23], and [24] by Perrett and others.
These studies show that specific cells in the brain of a macaque monkey where
found to be active for both two .dimensional and three dimensional
representations of a particular face or head seen from a single perspective.
Other cells were found to be active for the same object viewed from a different
side or angle.

The second aspect of an image representation scheme includes primitives
[20]. Primitives are the basic elements of shape information used in a process.
There are two basic types, surface-based (for two dimensional applications) and
volumetric-based (for three dimensional applications). A simple primitive may
describe the location and size of small pieces of an image surface. This may be
in the form of some basic edge or contour unit. A more complex primitive may
describe orientation and depfh information. The cost of a more complicated

representation is the amount of work that will be required by preceding levels of
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processing. Biologists are still unsure as to the exact manner of information

representation employed by the HVS for inpufs to the perception process.
Information that is probably represented includes occluding contours and cues,
surface contours and cues, surface orientation, surface texture, and various
shading attﬁbutes. There is some debate as to whether or not the HVS utilizes
optical flow information. The requirement that an effective primitive must
satisfy is that it be capable of fully representing‘all felevant features necessary in
the process it is being used in. These features must result in representational
separability which is the central issue involved in recognition tasks [34].

A common primitive of spatial information is a contour. Biologists do
agree that the HVS uses some form of this representation. David Marr identifies
three different types of contours [20]. The first is an occluding contour which
defines a discontinuity in depth. Tﬁis contour can be thought of as the
silhouette of an object. When the HVS is presented only silhouettes of an object,
it incorporates apriori information in order to make an educated guess about the
object’s identity. A second type of coﬁtour follows discontinuities in surface
orientation. The HVS has the tendency to assume that these interior contours
are convex. The final type of contour is a surface contour. This is a contour that
lies physically on a surface liké a marking or shadow line. The HVS uses these

basic contours to calculate other surface parameters like texture and shading.
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Bart Romeny and Luc Florack point out that there is neurophysiological and

psychophysical evidence that the HVS can even determine spatial derivatives up
to the fourth order to determine sorf\e parametérs [27].

The final aspect of an image représentation scheme is the organization that
it imposes on its primitives. Thxs can be used to weight some primitives more
than others. The 2 1/2 dimensional representation is one example of a
representation scheme [20]. Its primitives are distances to surfaces, surface
orientations, occluding contours, and contours along diséontinuities in surface
orientation. The scheme is more than a two dimensional representation since it
contains information about depth [8]. It 1s less than a three dimensional
representation since this information is not explicit (depth information is
contained in gradient form). The organization of this scheme allows all elements
to be weighted as equally important. The HVS utilizes a three dimensional
representation in order to conduct the task of perception. Researchers propose
that this representation may even use inputs from some form of the 2 1/2
dimensional scheme [8]. The inputs may also stem from groups of two
dimensional representations taken from various viewpoints [9].  The
organization of the 3 dimensional representation is based on modules. These

modules consist of groupings of similar primitive types. Scientists postulate




19
that a person is not aware of any representation type [8]. A person is only

aware of results.

2.3.4 Invariance

A final key issue in perception is invariance. As previously stated, the goal
of perception is to capture some invariant aépect of the surrounding
environment [34]. What makes this process so complicated is that input data is
inherently variable. One object may take on an infinite number of parametric
representations due to possible translations and rotations in a scene. This does
not even include possible variations due to noise or distorted camera (human
eye) imaging.

The human visual system has the dual task of identifying objects in spite of
variation and interpreting the type (and sometimes even the cause) of this
variation. Variation contains a certain amount of valuable information of its
own. In any working perception system, there must be certain attainable and
invariant features that can be isolated for the recognition of an object. Terry
Caelli, Mario Ferraro, and Erhardt Barth explain that invariénce can be satisfied
to different degrees [3]. Strong invariance is obtained when a representation’s

features uniquely and completely define the patterns or objects in an image.
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Weak invariance includes representations that may only be able to broadly

categorize objects based on the features represented. The HVS employs a
combination of strong and weak representations which forces researchers to
cross over into the realm psychology. Weak representations may be used to
identify less familiar objects or objects that are missing some feature information
(due to noise, vantage point, etc.). The Buman visual system’s robust nature is
evident in its ability to fill in where information is lacking with apriori
knowledge of a particular scene. This is used to make an educated guess about

the identity of a highly distbrted_ object.
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2.4 Human Visual System - Specific Implementation

This section will explore the actual hardware implementation and specific
perception algorithm of the human visual system (HVS). "Figure 2.1 below

illustrates the generalized path that will be traced.

Latera]‘ Geniculate Nucleus
Optic Nerve
Left Bye

Retins

Optic Chasm /

Primary Visual Cortex

Right Bye

Figure 2.1 The Human Visual System
The first step in the perception process is the sensation of light in the
environment. The sensitivity of the human eye to ligf\k stimulation is greatest
about an area in the center of the visual field referred to as the fovea [15]. The

HVS operates by directing the fovea at important points in the environment.
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This is an active process of scanning the visual field for important information.

The process of eye movement described above is referred to as gaze control [28].
Gaze control allows the information gathering resources of the eye to focus on
one particular object or area of the visual ‘ﬁeld. The recognition of objects is
accomplished using information gathered by the fovea. Periphery information
is still gathered, but at a significantly lower resolution. This information is used
for alerting, guidance, and gross feature identification. Gaze control is directed
in three different ways [28]. It can be driven by a directed task, a voluntary
fixation, or an involuntary reflex. It is thought that the parietal lobe may be
responsible for moving the fovea about a scene. This control is a form of
preprocessing for the HVS. It allows the viewer-centered HVS to exploit some
of the more beneficial characteristics of an object-centered coordinate system.
Objects that the HVS intends to identify are placed at the center of the visual

field which is the origin of the viewer-centered coordinate system.
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2.4.1 Retina

Once the attention of the fovea has been fixated on a particular portion of
the visual field, it is the responsibility of the lens to focus the image onto the
retina in the back of the eye. Photoreceptors in the retina absorb initial light
photons. These receptors are referred to as the cones and rods. There are 6
million color sensitive cones inside the fovea [30]. 120 million rods, for
peripheral and night vision, reside predominately outside the fovea. These cells
convert light radiation into electrical impulses. Higher light intensities produce
faster firing rates in these cells. Firing rates are the measure of intensity for any
stimulation in the HVS. The impulses produced travel through a layer of
bipolar cells, horizontal cells, and amacrine cells which serve in some early
image processing tasks. Thesé cells transmit their outputs to a layer of ganglion
cells which are the cells responsible for data transmission along the optic nerve.
These first two cell layers responsible for performing a considerable dimensional
reduction on the inputs to the retina. This is evident in the fact that there are
over 120 million photoreceptors and only 1 million ganglion cells to transmit
information to the next stage of visual processing [30].

The formation of center-surround receptive fields are believed to be the

major cause of this tremendous reduction. These areas contain information
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about groups of photoreceptor cells in a single format. The fields were first

described by Stephen W. Kuffler at the John Hopkins University School of
Medicine in 1953 [15]. Cenfer—surround receptive fields are formed by
combinations of bipolar, horizontal, and amacrine cells. 'I'hei‘f dutput is a single
ganglion cell. The activation of the field must meet two conditions which are

illustrated below in Figure 2.2.

Figure 2.2 Center-Surround Receptive Fields
The center of the field must be illuminated while the surrounding area must not.
Some fields are completgly opposite being activated when the surrounding area
is illuminated and the center is not. These receptive fields represent the first

steps in the organization of data for perception tasks.
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24.2 Optic Nerve

The axons of the ganglion cells in the retiﬁa' form the optic nerve. One of
the reasons that there is such a data reduction in the retina is that there is a
bandwidth limitation imposed by the size of the optic nerve [30]. Routing of
information in this nerve preserves the content qf the left and right visual fields.
These fields are kept separated by the retinas in both eyes. The optic nerve of
each eye routes information regarding the right half of the visual field to the
right hemisphere of the brain. The left half of the visual field is correspondingly
routed to the left hemisphere of the brain. Portions of this nerve cross at what is

called the optic chasm.
2.4.3 Lateral Geniculate Nucleus

The next step in the perception process of the HVS is the optic nerve’s
connection to the lateral geniculate nucleus (LGN) [30]. The LGN is actually a
part of the Thalamus which is responsible for directing information to
appropriate areas in the brain [12]. The‘ LGN further reduces the data set with
six layers of center-surround fields. These fields are more receptive to color

stimulus [30]. They discern between specific color combinations. Most of the
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learning occurring in the HVS is thought to take place between the excitatory

synapses of the LGN and the primary visual cortex [7].
2.4.4 Visual Cortex

The LGN leads directly through the parietal and temporal lobes to the
primary visual cortex. A feedback pati\ exists back to the LGN [15]. Its specific
function is still unknown. The pﬁméry visual cortex is an extremely complex
portion of the brain that is organized into six identifiable sheets or layers
occupying an area of some thirty square centimeters [27]. It is a highly
nonlinear network containing over 200 million cells. The primafy visual cortex
represents a direct mapping of features from the outside world. There are two
primary transformations that are accomplished. The first is a transformation of
information from a center-surround format to a line segment format. The
second transformation includes a combination of information from both eyes
[15].

The primary visual cortex is composed of four basic cell types that aid in
both of its basic responsibilities. These are simple cells, complex cells,
hypercomplex cells, and end-stopped cells [27]. Simple cells are orientation-

selective. These cells are responsive to certain lines and edges present in specific
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locations in an image. Complex cells are also orientation-selective. They are,

however, responsive to lines and edges in any area in the receptive field
oriented in the proper direction. These cells begin the process of combining
information from both eyes. Hyper-complex cells consist of various
combinations of complex cells. End-stopped cells compute boundaries in the
same manner as zero-crossings. All of these cell types are interconnected on
each of the cortex’s layers. According to Dale’s Principle each cell has either all
excitatory or all inhibitory connections [11]. There is even evidence that lateral
inhibitions are also present within the layérs [7]. Combinations of these cells are
capable of determining complicated features and even feature changes in the
form of derivatives. This latter computation is valuable for determining texture
boundaries and interior contours. -

Processing in the primary visual cortex begins with simple orientation
detection and proceeds through various levels of increasingly complex feature
detection. This is accomplished through a hierarchy of levels composed of the
basic cells described above. These cells self-organized into groups with similar
characteristics and complexities, receptive field positions, orientations, and
ocular dominance [15]. Information in each of the six layers is organized into
vertical orientation columns [7] [16]. Locality is important in that groupings in

close proximity are found to be iterated versions of each other. The use of
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column organization is thought to be an attempt to represent a three

dimensional environment on a series of two dimensional structures [15].
2.5 Discussion

The path of information that leads out of the primary visual cortex remains
a mystery. How the brain uses oﬁentation and feature information from the
primary cortex is also unknown. All that can be clearly stated is that the cortex
is not the final stage in the perception process [15]. There is research currently
being conducted on higher cortical visual areas which are thought to receive
projections from the primary cortex. In any case, the human brain is somehow
able to construct more complicated features from information generated in the
cortex. Apriori or context information is incorporated at some point in the
process and aids in the final identification of objects. For a listing of actual
performance qualities of the human visual system see [10] or [30].

This chapter shows that the human visual system is a highly complex
system. It presents an overview of what is currently understood about how this
system works in performing the tasks of sensation and pérception. The HVS
has the quality of being extremely modular and robust. An analysis approach

for understanding aspects of this system and the perception problem is
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presented. The chapter also shows how the human visual system addresses key

imaging issues in relation to object detection. Finally, the current understanding
of the perception problem is traced through the biological system. This chapter
serves as a foundation for the understanding of perception as a process. This

understanding is important for artificial systems as well as biological ones.




Chapter 3
Kohonen Model

3.1 Chapter Overview

The objective of this chapter is to introduce the topic of unsupervised
neural networks for vision applications. These self-organizing networks are
motivated by the biological considerations outlined in chapter 2. The reader can
reference [13], [1], [26], or [14] for a good foundation in neural networks and
basic self-organization. This chapter will higi\light the Kohonen feature map
which serves as a representative model of many self-organizing networks [1].
The chapter will also explore several optimization principles involved in self-

organization.
3.2 General Properties
The guiding principle of self-organization is that global order can arise

from local interactions [13]. Input patterns are presented to the network

producing certain activity. The connecting weights between neurons in the

30




31
network are then modified in response to this activity. Weight modification or
learning is based on a general form prescribed by Donald Hebb in 1949 [5].
Hebbian learning is a basic rule that is imposed on neurons in close proximity to
each other. If one cell lies next to another and contributes to that cell’s firing in a
repeated and consistent manner, then the weight between the two cells is
increased. Ti\e amount of increase in a weight is directly proportional to the
degreé of covariance that exists among all cells that affect a single cell’s firing
[13]. A form of Hebbian learning is believed to take place in the human visual
system between the lateral geniculate nucleus and the primary visual cortex [7].

Kohonen networks apply this type of learning to an artificial neural
network. The result is an unsupervised network in which there are no test
patterns that can be used to find a mapping relationship between an input space
and a specified output space. In fact there is no specification made of the output
space.  An unsupervised neural network produces a topographical
representation of an input space. This mapping is an implicit and often reduced
representation based on salient features [14]. TheSe features allow the network
to retain the same information content in representation as is in the input space.
Similar features in the input map to adjacent neurons in the output layer. The
network self-organizes into groups according to various features. This

neighborhood or grouping characteristic also gives unsupervised networks
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some error tolerance [21]. Unsupervised networks have been observed to self-
organize into high degrees of sfructure in representing an input domain.
Additionally, Kohonen writes that network resources are employed in .an
optimally'efﬁcient manner [16]. The strength of unsupervised neural networks
is their ability to discriminate between various key aspects of the input space.
This is essential for pattern and object' recognition.

The Kohonen feature map usually consists of a one or two dimensional
arrangement of interconnected neﬁrons in a single output layer. An illustration
of a one dimensional Kohonen map is shown below in Figure 3.1.

Qutprt Layer

Inpet La7sr / :

Figure 3.1 A 1 Dimensional Kohonen Feature Map
The size of this layer is chosen so as to minimize the amount of training time

required while retaining adequate space to allow for the representation of all
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salient features [1]. The input layer can be of any dimension and size. It is
usually fully connected to the output. Apriori information about the input
space may be used to alter this connectivity. This can result in significantly
faster and more accurate self-organization of the network. |

The interaction of neurons in the output lattice responding to an input
stimulation can best be described by the “Mexican hat function” [1]. This
activatio.n function specifies three regions of lateral influence with respect to any

single neuron. The interaction is illustrated below in Figure 3.2.
~ghort Ra.nge EAcitation

/\ Medium Range Inhibition

\\/'\/

Long Range Ezeitation
Figure 3.2 The “Mexican Hat Function”

These regions are all local to the neuron such that neurons on opposite sides of
the lattice are independent and have no influence on each other. Neurons in the
local region that are immediately next to a particular neuron provide a strong
lateral excitation to that neuron. Neurons that are at medium distances cause a
small amount of inhibition to the neuron. Neurons that are farthest away in the

local area cause small excitations. This type of lateral feedback is similar to that
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found in the center—sufround receptive fields of the human visual system.
Equation 3.1 below illustrates the response of a single neuron [13].

R | K '

y= (p(z wx; + Z C, yk) Equation 3.1

i=1 k=K
Let. the response of an arbitrary neuron be y. The signals‘from the input layer
will be denoted by x; while R is the number of inputs. The synaptic weights of
these inputs are represented by wi. The lateral interconnections described above
are denoted by Cx. The variable K includes the radius of neurons in the local
region. The function ¢ denotes any nonlinear function that limits the output (y)
and prevents it from assuming negative values. This lateral interaction of

neurons in the output layer is present both during and after learning.
3.3 Learning

Self-organization is accomplished between the input and output layers by
modification of connecting weights. The objective is to apply a local
modification rule that will result in the emphasis of important features. Simon
Haykin writes in Neural Networks; A Comprehensive Foundation that in order to
achieve self-organization and not simply stabilization of the network these

weight modifications (w;) must tend to self-amplify [13]. This is consistent with
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Dale’s Principle which states that all weights of a neuron must either be
excitatory or inhibitory [11]. Note that there are some artificial networks that do
utilize inhibitory connections consistent with this principle. In order to prevent
unbounded growth of a network’s weights, neurons are forced to compete for a
limited amount of resources. In other words only a few neurons are allowed to
fire at any one time. This is constrained by only modifying the weights of the
most excited neurons. In the Kohonen model weight modification is further
constrained so that only the neuron with the greatest excitation has its weights
increased. This is all referred to as competitive learning. Since the neurons are
competing in a winner-take-all manner, no single neuron is able to fire with out
the assistance of the neurons around it. This means that there is a tendency for
weight modifications to cooperate resulting in areas of strong weights for
particular features of the input space.

These principles are applied to the learning process as follows. First a
random set of weights is assigned to the synaptic connections between the input
and output layers (w). Small magnitudes tend to prevent any initial bias
allowing for increased discrimination between features in the input space. The
next step is to introduce a sample vector (x) from the input space to the network.
The vector should be chosen in direct relation to its probability of occurrence in

the input space. The third step is to choose the winning neuron in the output
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layer. This can be done by using an equation of the form shown below in

Equation 3.2 [13].
Voin = A min"x—wj" ,j=12,..N Equation 3.2

N denotes the number of neurons in the output lattice. This equation chooses
the minimum Euclidean distance that exists between the input vector and each
of the weight vectors. The fourth step in the learning process is to modify the
appropriate weights in the network. This is accomplished using Equation 3.3

[13].

w;(n)+n()x(n)-w;(®)], Je A

W (n) Else Equation 3.3
j ]

wl.(n+1)={

The current iteration is denoted by n. Robert Hecht-Nielsen describes the
Kohonen learning process as a movement of the weight vector for the winning
neuron from its original position towards the input vector (x) [14]. This is
accomplished for all weights in the neighborhood (A) of the winning neuron
(yw). The amount of this movement or weight modification is controlled by the
parameter 1. Both the learning parameter and the neighborhood size are varied
with time in order to aid in learning and map formation. The learning rate
parameter should be decreased from unity to .1 over time [13]. This allows for

broad adjustments as the map is initially forming. Once the general map has




37
been constructed, decreasing the parameter allows for a more detailed “fine
tuning” of the network. The neighborhood parameter should also be relatively
large at the onset of traihing to allow for an emphasis on strong lateral feedback.
This causes the weight vectors to be highly correlated which results in an initial
smoothness in the map surface. As the neighborhood size is decreased over
time, the emphasis shifts to inhibiting or negative feedback. This allows for tﬁe
uncorrelated growth of weight vectors which results in rough areas and greater
detail in the map.

This entire learning process of weight modification is repeated until an
adequate representation of the input space is made. The amount of time that is
required in order to fully train a network is referred to as the saturation time. At
saturation, the state of the hetwork remains constant even with continued
presentation of training patterns. In this state, the network has constructed its
optimal representation of the input space. Saturation time can be decreased
with the use of the “n-way” algorithm [1]. This algorithm makes use of the
clustering features of the Kohonen model. This is simply a divide and conquer
technique employed using a number of response windows. A “representative”
neuron is chose from each of the n windows. The winning neuron among these

“representatives” has its window examined in the next step. This winning
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window is then divided into n smaller windows. This process continues until
the size of the windows has been reduced to one neuron, the final winner.

Since the dimensionality of the lattice in the output layer is usually less
than that of the input layer, several features are employed to define the
complete representation. The final set of weighf vectors (w) is most dense in
areas where the input vectors (x) are most numérous [14]. As a result, it is vital
to include a representative sample of the actual input space in the set of inputs
used for learning. The lack of conformity t§ the probability density function of
the input space can distort the mapping relationship of the Kohonen model [14].
This can be compounded by another source of distortion in feature maps. The
distortion is a result of the map’s inherent tendency to over represent areas of

low density inputs and under represent areas of high density.
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3.4 Discussion

This chapter has outlined in brief the Kohonen model of unsupervised
neural networks. The model repr.esehts a first step in the construction of
perception systems patterned after human biology in both structure and
learning algorithm. The general performance of Kohonen-type networks is
surprisingly similar to that of the human visual system. Hayder Ali Alkasimi in
his thesis, Explorations in Cognitive Processing and Visual Neural Recognition,
found that over a number of training i)resentations, the number of weight
vectors that were within a certain radius of the input vectors followed an ‘S
curve. This is to be expectéd since at the onset of training few of the weight
vectors are be close to the input vectors. Over time the number of close weight
vectors increases. The rate of this change initially increases and then with
additional training decreases to zero as the number of close weight vectors
reaches a constant plateau. The shape of the entire functibn resembles that of a
hyperbolic tangent. Another similarity can be seen in‘ the final output state of a
Kohonen network. The network is a- topographical mapping of the input space.
This is the same result that has been observed in higher layers of the visual

cortex. One important difference between digital and biological systems is the
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manner in which forgetting is carried out. A disadvantage with all current
neural network implementations is that when storage capacity is reached, new
inputs erase old information. In the human visual system, new information is
continuously combined with old information thus preserving the total
information content of the system. Current research into Kohonen models has
been extended to include tf\e development of hiefarchically structured networks
similar to those found in the human visual system [1]. Unsupervised neural
networks may not provide the final solution to the perception problem. They
may only be part of the solution. Erkki Oja points out in his article, “Self-
Organizing Maps and Computer Vision”, that these networks, at the very least,
do provide valuable insights that may lend clues to other more efficient

approaches [21].




Chapter 4
Network Appli‘cations

4.1 Chapter Overview

This chapter will build upon the previous two and investigate current
applications of artificial neural networks to the perception problem. Although
the objective of this report is to address object detection, many techniques can be
borrowed from pattern recognition applications. Applications discussed in this
chapter will, fherefore, include both types. These applications will be examined
in light of the strategy outlined in chapter 2. Most of the current research
focuses on the second and third aspects of this strategy. These aspects include
the representation of data, the general algorithm structure, and the construction
of dedicated hardware. Section 4.2 will describe some current data
representations that are being proposed. Several algorithm organizations will
be considered in section 4.3. Finally, section 4.4 will examine in brief a dedicated

sensory device designed to mimic various characteristics of the human eye.
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4.2 Representational Form

The representation of data is critical in enabling any system to discriminate
Between objects in a scene. Of the various aspects of a representation scheme
discussed in chapter 2, only the primitive construction and organization provide
for practical avenues of future research. The goal of a good primitive is to accent
important differences in input data. In designing a primitive, a researcher uses
apriori knowledge to specify which feature types in a scene contain relevant
information. This can both simplify a task and limit the resulting system’s
applicability to other tasks. For exar;iple, occluding contours may be useful as
primitives in some 2 dimensional recognition tasks. ~Applied in for 3
dimensional recognition, these primitives could nbt fully specify information
about an object. They would only be able to specify its shadow. All other
information would be lost. A primitive simply imposes some basic structure on
the information that exists in a scene. Information is usually first collected as
raw data in a pixel intensity format like a gray level. Researchers must then
perform some degree of preprocessing to convert this into structured data.

Currently, there is no ideal representation scheme.
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Janusz Starzyk and Sinkuo Chai introduce a primitive construct based on
angle information derived from the spétial relationships of pixel intensities [31].
This is called a vector contour representatioh (VCR). A key issue in any
recognition system is invariance. The authors acknowledge this importance and
design VCR to capture scale, rotation, and translation invariant qualities of
binary images. First, specification is made of a set of standard angle templates
(0°,90°,-90°, etc. ). A template denoting segment or pattern end points is also
included. These templates are used to encode the angular relationships of
neighboring pixels in an image. Encoding begins at any location in the image
and proceeds until all the angular relationships are defined by a set of
templates. This encoding is the same as chain coding used in image processing
to reduce the storage requirements of contour based patterns. Chain coding
effectively reduces a two dimensional representation to a one dimensional
occluding contour vector of a pattern or object. This implicit representation is a
local definition of pixel relationships and as such contains a significant amount
of noise. Noise can be removed using an averaging filter to perform some
degree of smoothing. The authors employ a windowing function that averages

the angles of neighborhoods of four templates. The authors next integrate angle
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values in order to calculate accumulative angular variation. This is followed by
a normalization of both the magnitude and length of the vector.

Normalization here results in scale and translation invariance. Ti\e final result is
a one dimensional primitive of a two dimensional pattern. The authors next
take the FFT of the vector which adds rotational invariance to the
representation.

The authors apply VCR in both supervised and unsupervised networks for
character recognition only [31].  Although, the authors describe heir
representation for use in object recognition, there is no evidence that three
dimensional applications could be possible. Since there is only one primitive
type, there is no requirement for any additional primitive organization. The
performance of this representation for character recognition is reported to vafy
between 94% and 100%. This is performed on images containing single patterns
only. Itis possible that blob counting could be employed to deal with multiple
characters in an image. This primitive definition is limited, however, to two
dimensional pattern recognition due to its sole reliance on occluding contours.
Occluding contours are not invariant in three dimensions and can in fact be
highly misleading in what they deecribe. An example of this is how the shadow

of a six sided cube can appear as a hexagon or a square depending on vantage
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point. The representation would also encounter difficulties with gray scale or
color images where thresholding results in inaccurate descriptions of elements
in an image. Finally, the representation is extremely sensitive to the types of
patterns being recognized. Characters are relatively simple patterns to represent
since they contain few outlying segments and generally require only one
contour to describe. Chain coding often experiences problems with patterns
containing multiple open end and/or crossing contours. This representation is,
therefore, not very robust.

Marijke Augusteijn and Tammy Skufca present another implicit primitive
representation that incorporates texture information [2]. Textures are formed by
gray levels appearing in an image in some periodic form. This information is
applied to an object recognition task of finding hﬁman faces in a scene. The
authors gather pictures of human faces taken from various angles and distances.
Texture features from these pictures are derived from various gray level
statistics. The authors first use co-occurrance matrices to measure the frequency
of specific gray levels in four orientation directions (horizontal, vertical, and
both diagonal directions). These matrices allow for rotation and translation
invariance in that they simply represent the presence of textures. Eight types of

second order statistics are then computed. These include angular second
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moment, contrast , correlation, inverse difference moment, entropy, sum
entropy, difference entropy, and sum average. The statistics measure aspects of
texture in the scene and allow the authors to represent various hair and skin
textures of the human face. The statistics are appropriately scaled in order to
produce scale invariance. This is combined with the mean and standard
deviation of gray levels in each picture to form a ten dimensional input vector.

The authors employ cascade correlatiqn and Kohonen-like networks to test
these primitives. They report that both netwbri(s are able to correctly determine
the presence of a face in an image 77% to 83% of the time. This accuracy could
be increased with the use of higher order statistics in the input vector. Due to
the presentation of faces for training from a vafiety of vantage points, the
primitive form appears to uphold rotation, scale, and translation invariance.
The basic disadvantage to this approach is that it is computationally. expensive
and extremely time consuming.

Terry Caelli, Mario Ferraro, and Erhardt Barth present a hierarchically
organized set of explicit primitive representations in [3]. The representation is
based on the relationships of basic barts of a pattern. Unary elements are
defined as the basic constructs of any pattern. Binary features are used to define

the relationships of these unary predicates. The degree of invariance upheld by
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the primitives is dependent on the choice of unary and binary elements. The
authors next extend these primitives for use in a three dimension object
recognition application [3]. The scheme is labeled a natural representation due
to its biological roots. Objects in an _irnage are defined by a set of two
dimensional structures. These structures are in turn defined by sets of tangent
planes, surface normals, and rates of normal change (curvature). The planes are
physically represented in sets of differential operators. This is consistent with
how the human visual system is believed to organize its primitives. An
assumption is made that low-level processes exist to convert light intensity and
depth information into a three dimensional coordinate system. It is possible that
this is also accomplished in the Ihuman visual system in the vertical columns of
the primary visual cortex. The authors claim that the representation can uphold

scale, rotation, and translation invariance.
4.3 Algorithm Structure
This next section will examine two particular algorithm organizations

utilized in object detection. The goal of an algorithm structure should be to

adequately separate discriminating features of the particular data representation
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employed. The structures in this section employ a variation of the Kohonen
feature map discussed m chapter 3. The variation includes a hierarchy of
feature maps similar to what appears below in Figure 4.1 for a collection of 1
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Figure 4.1 The Hierarchical Kohonen Feature Map

Rélf Linsker first explored the benefits of multilevel feature maps [18]. Benefits
stem from the greater number of processing levels and the system’s enhanced
ability to organize along more complicated featuré qualities. Each layer is able
to repreéent progressively more complex features. One of the strengths that
Linsker points out is that each level in the hierarchy preserves the information
content of the input data. Each level only effects the information organization.

Linsker also finds some surprising similarities between these networks and their

biological counterparts. He found that lower levels of a multilevel network were
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able to self-organize into activation regions similar to center-surround receptive
fields found in the human visual system. Higher layers in the network
produced outputs that were orientation-selective. This is the same selectivity
that exists in the brain’s corticél columns. Linsker’s research defines the
fundamental strength of unsupervised networks. The basic difficulty in
organizing features is determining what informatién is important in producing
a desired output for the network. Which connections need to be adjusted and
how? This is the classic credit assignment problem. Unsupervised networks
avoid the issue by preserving all of the informatién locally at each level. This
reinforces the need for a fully descriptive primitive representation. The
primitive captures all of the information of the image that will ever be used in
the network. The grouping of local information allows for feature
discrimination at the global level where similar features are located in
neighboring neurons in the netWork. The grouping of information in the
network does allow for discrimination between features. Linsker refers to this
overall goal of a network as variance maximization. The quality of the
representation scheme determines whether or not discriminéting between these
features has the same meaning as discriminating between objects in the real

world.
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There are two biologically inspired models that have evolved over the last
few years that exploit the qualities highlighted by Linsker. These models build
on various aspects of the human visual system. James Landowski and
Baldamar Gil write that biologically moti%lated systems like Adaptive Resonance
Theory (ART) and Neocognitron are extremely useful for applications in
modern perception systems [17]. ART tends to be too complicated for practical
implementation. Additionally, it is not shift invariant and is not easily applied
for use in parallel implementations. This makes its use somewhat expensive
and time consuming. ART has been successfully appliéd in [4], [5], and [29].
Landowski and Gill apply a discrete Neocognitron model based on the
human retina for use in a target recognition system [17]. The system is intended
t<.) recognize the presence of tanks on a battlefield. The model consists of
multiple layers of self-organizing feature ‘maps. Infrared signatures are the
inputs to the system which employs Hebbian learning in its self-organization.
Training is acéomplished level by levél beginning with the input layer.
Conventional training techniques recommend that an input pattern be
presented to the first layer and that a single learning cycle be performed. The

same pattern is then presented to an additional layer as a second learning cycle

is performed. This continues until all of the levels have been trained on the
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pattern.  The authors report that this technique often requires up to sixty
epochs for the network to reach its saturation state. An alternative method is
proposed in which ten to twenty epochs are performed on each layer prior to
training on additional layers. The result is a more robust system that has
organized in a smaller amount of time.

The outputs of this system are complex discriminating features but they
are not able to recognize targets [17]. The authors point out that the system is
not able to incorporate relative feature importance based on apriori informatioﬂ.
It is also not able to accumulate evidence in the identification of a tank’s
presence. Finally, the system is not able to support a small representation of
target information. An additional mechénism is incorporated into the overall
system that can include this type of information in the identification process.
The authors use a fuzzy logic system to perform this task. In this way, the
strength of the self-organized network in isolating important features can still be
used. Fuzzy logic uses probability distribution functions to incorporate apriori
and circumstantial information. This is in fact an example of the optimal
application of an unsupervised neural network. It adds further evidence to
Erkki Oja’s comment that neural networks are best suited for intermediate levels

of vision processing. Higher levels of processing like association require state-
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space searching or symbolic processing [21]. This is not efficiently implemented
with a neural network. These are, however, the specific tasks that Al or fuzzy
logic systems have been designed for. The authors agree with this finding and
do construct a robust system that is capable of achieving positive recognition
rates of close to 100%. The system is even 'ablé to achieve this level of
performance with mobile targets.

Hayder Ali Alkasimi introduces another form of the multilevel
Neocognitron model for object detectfoﬁ applications [1]. He calls this a
dynamic Neocognitron model. The network is desighed to improve the
practicality of using self-organizing networks for recognizing multiple objects.
Current computer architectures are faced with an O(n? requirement in growth
for each additional object that is memorized by the network. The model consists
of three layers of feature maps. The first two layers are connected like standard
Kohonen feature maps. The first layer is the input plane. The next layer is the
edge plane. Alkasimi specifies the output of this layer to consist of standardized
edges and thus prevents the employment of local Hebbian learning. An edge is
defined to be two neighboring pixels oriented in one of four standard directions
(vertical, horizontal, and both diagonals). This sets the edge layer size at four

times that of the input plane.
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The dynamic portion of the system is the output layer. During training
patterns to be recognized are presented to the system. This produces a certain
number of activated neurons in the edge plane. The network then allocates a
neuron in the output layer. The author next defines a feature explicitly as a
combination of two or more edges. .The particular inter-relationships of all
activated edges for the training pattern are then stored in a local list at the
allocated neuron. These are the stored features that can be used for
discrimination in recognition tasks. The author claims that the stored
connectivity of the edges allows for inherent rotation and translation invariance
in the system. The connectivity is simply a representation of an object’s
occluding contour.  Unfortunately, occluding éontours can be extremely
misleading for 3 dimensional objects. The network is not able to support scale
invariance since different sizes of the same contour will result in different
features. The prevention of Hebbian learning (and suBsequent definition of
simple primitives representations) prevents information preservation at each
level. Organization is specified for the first two levels. The system assumes that
all pertinent data will reside in only these types of features. The system is,
therefore, limited to basic pattern recognifion tasks. During actual operation,

output layer neurons denote the degree of presence for each stored object. This
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application demonstrates the importance of Hebbian learning in allowing a

network to self-organize along optimal feature differences.
4.4 Dedicated Hardware

Current research into the field of object recoghition has produced at least
one piece of dedicated hardware. G. Sandini and M. Tistarelli report on the
construction of a .space-variant sensor device designed and patterned after the
retina of the human eye [28]. The device picks up high resolution information at
the center of its fovea and lower resolution information on the outskirts. The
authors point out that high resoiution data often results in information
saturation of a recognition system. In most cases, the information is totally
unrelated to the particular object of interest. The retina in the human eye allows
for sélective areas of high resolution. Information is gathered in areas where it
is most likely to be relevant. The implicaﬁon of such a device for artificial
systems is that the recognition process becomes significantly less
computationally expensive. A large portion of unrelated data is filtered out of
the system prior to processing. The central problem for the device is how td

select important areas of a scene. This remains a significant area of frustration
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for researchers. Currently gaze control is limited to the directed movements of

an observer.




Chapter 5

Conclusion

This report has given an overview of the implementation of current object
detection schemes and some of the more important considerations involved. It‘
has shown how an understanding of human vision can lend greater insight into
the construction of such systems. Several imaging principles were addressed in
an attempt to better isolate and define the perception problem. Invariance was
seen as a key factor for reliable recognition. The methods of perception
employed in biology served as a starting point for studying artiﬁcial systems.
This led to exploration in the field of self-organized neural networks. These
networks were seen to organize data in a similar fashion as the human visual
system based on local relationships. Kohonen feature maps were examined in
order to identify some basic properties of self-organization that are useful in
recognition tasks. Finally, current applications in terms of primitive
representation and algorithm organization were addressed. These applications

showed that neural networks do not entirely solve the perception problem. The
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strength and value of an unsupervised neural network remains its ability to

discriminate between various features in the input space. The lesson to be
learned here is that neural networks are extremely useful for certain types of
data processing. Current technology is not able to imitate the human visual
system. Research into neural technology is valuable for two reasons. First, a
system may be built using some aspect of this technology. Second, research into
neural networks may give added insight into better ways of approaching the
perception problem. In any case, neural networks are valuable in developing

any future technology that may be able to mimic the human visual system.
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